and Molybdenum(W). I.

H. Gehrke, Jr., and J. Veal

Received fune 11, 1969

The compound $MoO₂(C₅H₇O₂)₂$ has been reinvestiga*ted and those methods of synthesis yielding reddishyellow products have been found to be mixtures of* $MoO₂(C₅H₇O₂)₂$ and $Mo₂O₃(C₅H₇O₂)₄$. Identification *of mixtures was made by comparison of the visible spectrum and X-ray diffraction patterns with samples of known purity. The various syntheses for MozOr* $(C_5H_7O_2)$ and $MoO_2(C_5H_7O_2)$ have been evaluated. *A new method of synthesis of* $Mo_2O_3(C_5H_7O_2)$ *is reported. The ultraviolet and visible spectra of Mo20s* $(C_5H_7O_2)$ ₄ and $MoO_2(C_5H_7O_2)$ ₂ have been obtained in *a variety of solvents and the electronic transitions assigned. The infrared spectrum and the mode of formation of Mo₂O₃(C₅H₇O₂)₄ is discussed. Several additional molybdenum acetylacetonate complexes reported to contain molybdenum(V) and (IV) have been reinvestigated.*

Introduction

During a study of molybdenyl compounds, it became necessary to prepare $MoO₂(acac)₂$, where acac = acetylacetonate ion. This compound was first prepared by Gach,' but incorrectly formulated as Mo- (acac)₂. Rosenheim and Bertheim² later formulated the compound as $MoO₂(acac)₂$. Morgan and Castell³ confirmed the latter formula and proved the product to be the same as that prepared by Gach.' Additional methods of preparation have been cited in the literature,⁴⁹ but the color and melting point of the products vary considerably. During the course of this study, Bernal¹⁰ reported the free radical and autoxidation-reduction of $MoO₂(acac)₂$ under varying conditions to $Mo₂O₃(acac)₄$. Because of certain discrepancies with the work of Bernal¹⁰ and the fact that our studies are more extensive, we wish to report the findings. To clear up certain questions concerning

-
-
-
-
-

(1) F. Gach, *Monatsh.*, 21, 98 (1900).

(2) A. Rosenheim and A. Bertheim, Z. Anorg. Chem., 34, 427 (1903).

(3) G. T. Morgan and A. A. S. Castell, *J. Chem.* Soc., 3252 (1928).

(4) W. C. Fernelius, K. Terada and B. E. B (13) D. Grdenic and B. Korpar-Colig, Proc. *Chem. Sot., 308* (1963).

the nature of other acetylacetonates reported to contain molybdenum (V) and (IV) , the investigation includes these complexes.11-13

Experimental Section

Reagents. Acetylacetone, Aldrich puriss grade, was used without further purification. All molybdenum compounds were gifts of Climax Molybdenum Corp. and used as received. All solvents were used as received except those required for ultraviolet and visible spctra . These were purified using standard procedures.¹⁴

Analyses. Carbon and hydrogen analyses were performed by Galbraith Microanalytical Laboratories, Knoxville, Tenn., or by the departmental analyst. Molybdenum content was determined by the method of Tyree.¹⁵

Measurements. Infrared spectra were obtained as KBr disks or as nujol mulls on a Perkin-Elmer 521 spectrophotometer. The sodium chloride region was calibrated with polystyrene, and water vapor served as the calibration substance for the low frequency region.¹⁶ The accuracy is ± 2 cm⁻¹. Visible and ultraviolet spectra were obtained with a Beckman DK-2A recording spectrophotometer. X-ray diffraction patterns were obtained using a Picker biplane Defractometer and Cu K α radiation with a nickel filter. Molecular weights were determined with a Mechrolab Model 301 Vapor Pressure Osmometer. Differential thermoanalysis was obtained using a Fisher Model 260 Differential Thermolyzer.

Dioxobis(acetylacetonato)molybdenum(VI), Moor (acac)₂. A modified procedure of Jones⁷ was found to yield the purest product in the highest yield. Sodium- molybdate dihydrate 4.85 g (2.04 mmoles) is dissolved in 50 ml of water and 6 N hydrochloric acid is added until the $pH = 1$. Then 6 ml of acetylacetone (6.0 mmoles) is added to the solution with vigorous stirring that breaks up globules which contain entrapped acetylacetone. The yellow solid, 5.88 g, (90% yield) is isolated by filtration, washed

Gehrke, Veal 1 *Acetylacetonate Complexes of MO" and MO"'*

⁽¹⁴⁾ K. B. Wiberg, Laboratory Technique in Organic Chemistry,
McGraw-Hill Co., New York, (1960).
(15) S. Y. Tyree and S. M. Horner, *Inorg. Chem., 1*, 122 (1962).
(16) L. R. Blaine, E. K. Plyler and W. S. Benedict, *J. Re*

with 2 parts cold (0°C) ethanol, 2 parts acetone and dried.

If the filtrate is allowed to stand 4-5 days, another 6% of MoO₂(acac)₂ can be isolated. The product can be recrystallized from $(1:20)$ acetylacetone: ethanol mixture with a minimum of heat. *Anal.* Calcd. for $C_{10}H_{14}O_6M_0$: C, 36.82; H, 4.32; Mo, 29.41. Found: C, 36.74; H, 4.36; MO, 29.52. Molecular weight determination in ethanol gave values of 331, 340 and 325 (Calcd. 328).

 $MoO₂(acac)₂$ will slowly turn blue when exposed to sunlight. It is very stable if washed free of acetylacetone and dried thoroughly. If all the acetylacetone is not removed, the product slowly becomes tinged with red.

~-oxo-dioxotetrakis-(acetylacetonato)-dimolybdenum- (V) , $Mo_{2}O_{3}(acac)$. Into a pyrex tube, 2 cm in diameter and 15 cm long, are placed 30 ml of acetylacetone and 3.0 grams of $MoO₂(acac)₂$. The tube is sealed and heated at 210°C for 24 hours. After the tube is cooled and opened, 2.18 g (80%) of Mo₂O₃-(acac)4 is isolated by filtration, washed with ethanol, then acetone and dried. By concentration of the mother liquor, an additional 0.55 g (11%) can be obtained. *Anal.* Calcd. for $C_{20}H_{28}O_{11}Mo_{2}$: C, 37.57; H, 4.43; MO. 30.16. Found: C, 37.92; H, 4.31; MO, 30.32.

Molecular weight determination is impossible because of the limited solubility of $Mo₂O₃(acac)₄$ in suitable solvents. The product is very stable in air.

Mixture Separation. Reddish-orange MoO₂(acac)₂ prepared by the method of Fernelius, *et a1.,4* is extracted with dry hexane for one week. The total yield of $Mo₂O₃(acac)₄ remaining in the thimble is less than$ 5%. Purity of the Mo₂O₃(acac)₄ is determined by elemental analysis and comparision of the X-ray diffraction pattern, visible and infrared spectra with an authentic sample. Isolation of the $MoO₂(acac)₂$ is not possible due to decomposition resulting from the length of time the sample is heated.

Results and Discussion

Evaluation of the Syntheses. Since numerous methods appear in the literature for the preparation of $Mo₂O₃(acac)₄$ and $MoO₂(acac)₂$, all the procedures have been reproduced and evaluated on the basis of purity, percent yield and availability of starting materials. For $MoO₂(acac)₂$, a modification of the method of Jones' was found to be the best. The use of hydrochloric acid in place of nitric acid is preferable because of the increased solubility of the $resultant$ molybdenum species. The use of $MoO₃$ is not satisfactory due to the large quantity of NH40H required. In the method of Morgan and Castell, the yield is low and the product is contaminated with molybdenum blue. A modified Larson and Moore⁶ preparation is good, but requires $MoO₂Cl₂$ as the starting material. The method of Fernelius, *et aL4 is* unacceptable for the product is contaminated with $Mo₂O₃(acac)₄$.

The preparation of $Mo₂O₃(acac)₄$, from a neutralized hydrochloric acid solution of $MoO₃$ which had been reduced with MO, was thought to be a good method," as the spectra and analysis were good, but the X-ray diffraction pattern showed the presence of molybdenum metal. Oxidation of $Mo(acac)_3$ ¹⁸ is not feasible since the starting material is difficult to obtain and the purification of the oxidation product is tedious. A complex reported to be $\text{MoO}_2(\text{acacH})_2$,¹³ formed by the reduction of $MoO₂(acac)₂$ with zinc, was found to be $Mo₂O₃(acac)₄$, but the method is poor since $Zn(acac)$ is a contaminant. Hydrolysis of $MoOCl(acac)₂$ ⁶ is a good method, but it requires MoOCl₃. The sealed tube reaction of $MoO₂(acac)₂$ and acetylacetone provides a simple almost quantitative conversion to $Mo₂O₃(acac)₄$.

Identification of the Mixture by Spectrographic Means. In the metal-oxygen stretch frequency region between 900-1000 cm⁻¹, MoO₂(acac)₂ absorbs at 938 and 910 cm⁻¹, while $Mo₂O₃(acac)₄$ absorbs at 958 and 930 cm⁻¹. Failure of previous workers^{4,6,19,20} to recognize the $Mo₂O₃(acac)₄$ impurity is due to the fact that 7-10% is necessary for appearance of the 958 cm⁻¹ absorption band and under normal reaction conditions,⁴ the percentage formed is less than half this value. Bernal¹⁰ has indicated that the reaction of $MoO₂(acac)$, or $MoO₃$ under the reflux with acetylacetone (8 hours former, 18 hours latter) yields $Mo₂O₃(acac)₄$ based on X-ray diffraction data. This does not agree with the present study as indicated by the amount of $Mo₂O₃(acac)₄$ isolated by extraction, the infrared or visible spectra or the X-ray diffraction pattern intensities. Our X-ray data, given in Table I, indicates that the predominate species is still $MoO₂$ - $(\text{acac})_2$.

Since the visible region is more sensitive to small amounts of impurities, it is possible to observe the 490 mu band attributable to $Mo₂O₃(acac)₄$ in 0.5% concentration. Thus the visible spectra obtained by Bartecki^{19,20} for MoO₂(acac)₂ indicates contamination with $Mo₂O₃(acac)₄$.

Formation of Mo₂O₃(acac)₄. From the literature and the observations presented earlier in this paper, three possibilities for the contamination of $MoO₂(acac)₂$ exist. Acetylacetone can act as a reducing agent as illustrated by the formation of $VO(acac)_2$ from V_2O_5 and acetylacetone,²¹ but in the reaction with $MoO₃$, complex formation takes precedent over reduction since the primary product is $MoO₂(acac)₂$. The possibility of a photochemical reaction involving acetylacetone and/or $MoO₂(acac)₂$ has been observed by Bernal" and by the current work. The importance of temperature is evident from a comparison of the preparation of $MoO₂(acac)₂$ from $MoO₃$ and acetylacetone in ethanol and from $MoO₃$ and acetylacetone. The former yields no $Mo₂O₃(acac)₄$, while the latter yields up to five percent. Additional proof can be

⁽¹⁷⁾ M. L. Larson (American Metal Climax), U.S. 3, 326, 949,
June 20, 1967. C.A. 67, 9243F (1968).
(18) M. L. Larson and F. W. Moore, *Inorg. Chem.*, 1, 856 (1962).
(19) A. Bartecki and D. Dembicka, *Roczniki Chemil*, 39,

⁽²⁰⁾ A. Bartecki, Chem. *Zvesfi, 19,* 161 (1965). (21) R. A. Rowe and M. M. Jones, Inorg. Syn., 5, 114 (1956).

a visual estimation

obtained from the synthesis of $Mo₂O₃(acac)₄$ in a sealed tube, since too low a temperature results in decreased conversion of $MoO₂(acac)₂$ to $Mo₂O₃(acac)₄$.

While temperature is important, sufficient acetylacetone must be present for the formation of $Mo₂O₃$ -(acac)₄. To illustrate, Bernal¹⁰ has shown that $MoO₂$ (acac)₂ when heated at 100°C for two hours yields a green solid containing Mo(V). Fernelius et al.,⁴ state that boiling $MoO₂(acac)₂$ in benzene yields a yellowgreen solid of undetermined composition. Archer²² points out that $MoO₂(acac)₂$ decomposes at room temperature turning green eventually, but the infrared does not indicate the formation of new complexes. We have followed the decomposition by thermal gravimetric methods in the hope of isolating the complex $MoO₂(acac)$, but there was only a gradual weight loss with the increase in temperature.

Taking these factors into account it is possible to suggest a mechanism for the formation of $Mo₂O₃$ - $(\text{acac})_4$ based on the work of Arnett and Mendelsohn.² They have suggested in the destructive autoxidation of Fe(acac)₃, the formation of a free radical with the concomitant reduction of unity in the oxidation state of the iron. Bernal, 10 on the basis of ESR, indicates the formation of $MoO³⁺$ when $MoO₂(acac)₂$ is heated. Dimerization following the reaction scheme, $2MoO³⁺$ $+ H₂O \rightleftarrows$ [MoO-O-MoO]⁴⁺ + 2H⁺, and subsequent reaction with acetylacetone would yield $Mo₂O₃(acac)₄$. $MoO³⁺$ and $H₂O$ could be formed by the complex organic radicals produced by the destructive autoxidation of $MoO₂(acac)₂$.

Larson and Moore⁶ report the formation of redorange $MoO₂(acac)₂$ from the reaction of $MoO₂Cl₂$ and acetylacetone, followed by the addition of water. We have found that the addition of $MoO₂Cl₂$, to a solution of acetylacetone in water, does not result in the formation of $Mo₂O₃(acac)₄$. This situation is more difficult to explain. One possibility is the reaction of acetylacetone and water to form a complex species which does not have reducing properties. Second, the reaction of $MoO₂Cl₂$ and acetylacetone may be incomplete and the addition of water results in the formation of $MoO(OH)₂Cl₂$ which reacts with acetylacetone in the presence of HCl to form the Mo-O-MO linkage.

Infrared Spectra. Experimental and theoretical investigations on the systems $M(acac)_2$ and $M(acac)_3$ have contributed to our understanding of the spectra of metal acetylacetonates. $24-30$ Substantial agreement exists in the region above 700 cm^{-1} which contains the modes primarily derived from the ligand. Disagreement still exists in those areas below 700 cm^{-1} involving metal-oxygen modes and these modes coupled with C-CH₃ bend or ring deformations.

A frequency assignment for $MoO₂(acac)₂$ has recently been published 31 based on the interpretation of $Cr(acac)_3$ ²⁴ There is no evidence in the spectrum of contamination with $Mo₂O₃(acac)₄$ and we are in complete agreement with the position of the bands. The spectra of $MoO₂(acac)₂$, $Mo₂O₃(acac)₄$ and MoOCl- $(\text{acac})_2$ below 700 cm⁻¹ are far more complex than Cr(acac)s. The complexity is probably due to gross structural differences and without additional information, such as the use of ¹⁸O labeled acetylacetone, frequency assignments based on a simple $M (acac)₃$ model must be regarded as tentative.

As a detailed study of the infrared spectrum of $Mo₂O₃(acac)₄$ has not been made, the frequencies and tentative assignments are given in Table II. The different types of molybdenum-oxygen frequencies have been discussed previously.^{8,32} No metal sensitive bands could be found below 400 cm^{-1} , as observed by Mikami, et $al.^{25}$ for other metal acetylacetonates.

Ulfraviolet and Visible Spectra. The spectra have been recorded in a series of solvents to determine the identity of the transitions and their effect on possible decomposition of the complexes. The results are given in Table III. The position of the maxima are in good agreement with those previously repor-

-
-
-
-

Gehrke, Veal 1 *Acetylacetonate Complexes of MO" and MO"'*

⁽²²⁾ R. D. Archer, *ARL* 63-160 (1963).

(23) E. M. Arnett and M. A. Mendelsohn, *J. Amer. Chem. Soc.*,

4, 3824 (1962).

⁽²⁴⁾ S. Pinchas, B. L. Silver, and 1. Laultcht, 1. *Chem. Phys., 46, 1506* **(1967).**

⁽²⁵⁾ M. Mikami, 1. Nakagawa, and T. Shimanouchi, Spectrochim.

Acta, 23 A, 1037 (1967).

(26) H. Junge and H. Musso, *Ibid.*, 24 A, 1219 (1968).

(27) C. Djordjevic, *Ibid.*, 17, 448 (1961).

(28) G. T. Behnke and K. Naka

^a nujol mull or KBr pellet; b vw = very weak, w = weak, sh = shoulder. $m =$ medium, $s =$ strong, $vs =$ very strong, $br =$ broad,

Table III. Visible and Ultraviolet Spectral Data for Mo₂O₁- (acac) , and $\text{MoO}_2(\text{acac})$

		MoO ₂ (acac) ₂			$Mo2O3(acac)4$	
		λ_{max}	$\epsilon_0(1, \text{mole}^{-1})$	$\lambda_{\texttt{max}}$	$\varepsilon_0(1, \text{mole}^{-1})$	
			cm^{-1})		cm^{-1})	
Solvent		$m\mu$		mu		
CH,CN		317	5,110	750	361	
		263	11,165	487	9.250	
		208	12,963	405	3,000	
				327	15,234	
				248	21,900	
$C_5H_8O_2$		343	4,845	492	7,624	
				396	2,893	
				346	10,362	
C ₆ H ₆		317	4,754	490	9,435	
		282	18,531	408	3,862	
				328	14,983	
				278	22,480	
CHCl.		317	6,577	488	9,232	
		273	23,960	320	14,047	
				272	22,000	
CH ₂ Cl ₂		315	6,595	750	457	
		272	20,229	488	10.550	
				412	4,220	
				328	15,530	
				250	23,549	
$C4H4O2$		320	6.472		Decomposes	
		272	19,981			
C.H.OH	100%	317	6,854			
		272	27,435			
	95%	317	7,058	320	16,240	
		273	23,363	270	22,116	
	90%	273	12,210			
	67%	273	11,362			

with the $\pi \rightarrow \pi^*$ transition and the 314 m μ band to the transfer of an electron from the molybdenyl group to an empty molybdenum orbital. In $Mo₂O₃(acac)₄$, the shoulder at 320-330 m μ may be the ²B_z→²E(II) transition with the increased intensity probably attributed to coupling with the Mo-O-MO bridge.

of free acetylacetone.

(33) R. H. Helm and F. A. Cotton, J. *Amer. Chem. Sot., 80, 5658 (1958). (34)* R. M. Pike and R. R. Luongo, *Ibid., 88, 2972 (1966).*

ted, but m several cases differences in the extinction coefficients have been observed. The complexes have a solvent dependent maximum, 263-282 m μ ($\varepsilon_0 \approx$ 20,000), which can be assigned to the $\pi \rightarrow \pi^*$ transi $tion³³$ with the typical increase in extinction coefficient." Greater deviation in the position of the peak was observed for $Mo₂O₃(acac)₄$. No correlation between the position or intensity of the maximum and the polarity of the solvent was found. Decomposition with time or increase in water concentration of ethanol was observed with $MoO₂(acac)₂$, as there is a decrease in the intensity of the $\pi \rightarrow \pi^*$ transition with a concomitant shift of the band towards that

The shoulder at 317 m μ in MoO₂(acac)₂ is probably not the $n\rightarrow \pi^*$ transition, since the intensity is too great and the band is insensitive to the polarity of the solvent. Partial shielding of the ring oxygens by neighboring CH_3 groups sometimes diminishes solvent effects,³³ so the $n\rightarrow \pi^*$ transition cannot positively be ruled out. Moore and Rice⁸ propose the $\pi \rightarrow \pi^*$ transition possibly coupled with some ligand oxygen-metal $d\pi$ -p π character at 314 m μ . However, the unassigned band at $262 \text{ m}\mu$ is more consistent

Inorganica Chimica Acfa (*3: 4* 1 *December, 1969*

The visible spectrum of $Mo₂O₃(acac)₄$ consists of peaks at 750 (${}^{2}B_{2} \rightarrow {}^{1}B_{1}$), [acac \rightarrow Mo(V)] and 405 mµ (${}^{2}B_{7} \rightarrow {}^{2}B_{1}$). Larson and Moore³² did not observe the $750 \text{ m}\mu$ absorption possibly due to a low concentration of $Mo₂O₃(acac)₄$. Bartecki and Dembicka¹⁹ have reported that the spectrum of $MoO₂(acac)₂$ in acetylacetone contains bands at 768, 492 and 344 my. The first two bands are due to $Mo₂O₃(acac)₄$ impurity.

Other Molybdenum(V) and (VI) Acetylacetonate Complexes. Gredenic and Korpar-Colig¹³ have reported that $MoO₂(acac)₂$ in hot acetylacetone is reduced by zinc to a brown complex which they formulated as $MoO₂(acacH)₂$. It was believed to contain neutral acetylacetone because of the absence of the 1188 cm-' and *728* cm-' bands attributed to the C-H frequency. Fackler³⁵ has questioned this formulation, while Bernal" indicates the reaction yields $Mo₂O₃(acac)₄$. We have prepared the product according to the procedure of Grdenic and Korpar-Colig¹³ and identified the product as a mixture of $Zn(acac)_2$ and $Mo_2O_3(acac)_4$. The product does not contain neutral acetylacetone, as no absorption occurs above 1600 cm⁻¹. In addition, the 1188 cm⁻¹ band, which appears as a strong band in $MoO₂(acac)₂$, is very weak in $Mo₂O₃(acac)₄$ and is frequently undetected in the infrared.

Further interest was shown in the molybdenum (V) complex formulated as $Mo(OH)_{3}(acac)_{2}$. $3H_{2}O^{11,12}$ or

(35) J. P. Fackler, Jr., in « Progress in Inorganic Chemistry », F.
4. Cotton, Ed., Interscience Publishers, New York, Vol. 7, p. 400 A. Co.
(1966).

 $MoO(OH)(acac)₂$. $4H₂O³⁶$ since there is the possibility the complex is dimeric. All attempts to prepare the complex resulted in the formation of $Mo₂O₃(acac)₄$ and $MoO(OH)$ ₃. Colton and Rose³⁷ have proposed that a hydrochloric acid solution of Mo^V exists as:

This suggests that $Mo₂O₂(OH)₂(acac)₄$ can be prepared under the right conditions, since we have been able to prepare $Mo₂O₃(acac)₄$ by the substitution of four acetylacetonate groups for the eight chloride ions in 3. However, we feel that the formation of 2 is more pH dependent than suggested by Colton and Rose³⁷ and that very exacting conditions are necessary for the formation of $[Mo₂O₂(OH)₂Cl₈].⁴$

Recently, Afanasev, Bantysh and Knyazev⁹ reported the existence of the same species $MoO(OH)(acac)$ ₂ by the extraction of an acidic, aqueous solution of Mo^v with chloroform. Insufficient analytical data and physical measurements are given to substantiate their formulation. We have been unable to isolate a compound with the limited experimental procedure given.

Acknowledgments. The authors wish to thank Climax Molybdenum Company for the gift of the molybdenum chemicals.

(36) P. C. H. Mitchell, I. Inorg. and Nucl. Chem., 26, 1967 (1964). (37) R. Colton and G. G. Rose, *Aust. 1. of Chem.,* 21, 883 (1968).